WHOI-Plankton- A Large Scale Fine Grained Visual Recognition Benchmark Dataset for Plankton Classification

نویسندگان

  • Eric C. Orenstein
  • Oscar Beijbom
  • Emily E. Peacock
  • Heidi M. Sosik
چکیده

Planktonic organisms are of fundamental importance to marine ecosystems: they form the basis of the food web, provide the link between the atmosphere and the deep ocean, and influence global-scale biogeochemical cycles. Scientists are increasingly using imaging-based technologies to study these creatures in their natural habit. Images from such systems provide an unique opportunity to model and understand plankton ecosystems, but the collected datasets can be enormous. The Imaging FlowCytobot (IFCB) at Woods Hole Oceanographic Institution, for example, is an in situ system that has been continuously imaging plankton since 2006. To date, it has generated more than 700 million samples. Manual classification of such a vast image collection is impractical due to the size of the data set. In addition, the annotation task is challenging due to the large space of relevant classes, intra-class variability, and inter-class similarity. Methods for automated classification exist, but the accuracy is often below that of human experts. Here we introduce WHOI-Plankton: a large scale, fine-grained visual recognition dataset for plankton classification, which comprises over 3.4 million expert-labeled images across 70 classes. The labeled image set is complied from over 8 years of near continuous data collection with the IFCB at the Martha’s Vineyard Coastal Observatory (MVCO) [3, 4]. We discuss relevant metrics for evaluation of classification performance and provide results for a traditional method based on hand-engineered features and two methods based on convolutional neural networks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

شناسایی نوع و مدل وسیله نقلیه با استفاده از مجموعه بخش‌های متمایز‌کننده

In fine-grained recognition, the main category of object is well known and the goal is to determine the subcategory or fine-grained category. Vehicle make and model recognition (VMMR) is a fine-grained classification problem. It includes several challenges like the large number of classes, substantial inner-class and small inter-class distance. VMMR can be utilized when license plate numbers ca...

متن کامل

Assessing the Challenge of Fine-Grained Named Entity Recognition and Classification

Named Entity Recognition and Classification (NERC) is a well-studied NLP task typically focused on coarse-grained named entity (NE) classes. NERC for more fine-grained semantic NE classes has not been systematically studied. This paper quantifies the difficulty of fine-grained NERC (FG-NERC) when performed at large scale on the people domain. We apply unsupervised acquisition methods to constru...

متن کامل

Fine-Grained Visual Classification of Aircraft

This paper introduces FGVC-Aircraft, a new dataset containing 10,000 images of aircraft spanning 100 aircraft models, organised in a three-level hierarchy. At the finer level, differences between models are often subtle but always visually measurable, making visual recognition challenging but possible. A benchmark is obtained by defining corresponding classification tasks and evaluation protoco...

متن کامل

Object-centric Sampling for Fine-grained Image Classification

This paper proposes to go beyond the state-of-the-art deep convolutional neural network (CNN) by incorporating the information from object detection, focusing on dealing with fine-grained image classification. Unfortunately, CNN suffers from over-fiting when it is trained on existing finegrained image classification benchmarks, which typically only consist of less than a few tens of thousands t...

متن کامل

Plankton Image Classification using Convolutional Neural Networks

The study of plankton distribution is an important tool used for assessing the changes to marine ecosystem. Having a robust automated system for classification of plankton images plays an important role in advancing marine biology research. The images used in this study come from the SIPPER system. The challenges with SIPPER’s plankton image dataset are the high degree of similarities between d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1510.00745  شماره 

صفحات  -

تاریخ انتشار 2015